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The effect of sidewall nucleation on nanowire morphology is studied theoretically. The model provides a
semiquantitative description of nanowire radius as a function of its length and the distance from the surface. It
is demonstrated that the wire shape critically depends on the diffusion flux of adatoms from the substrate and
on the rate of direct impingement to the sidewalls. At high diffusion flux the wire shape is cylindrical. A
decrease of diffusion from the surface leads to the onset of nucleation on the sidewalls resulting in the lateral
extension and in the reduction of wire length. The wire shape changes from cylindrical to conical, because the
supersaturation of adatoms driving the nucleation is higher at the wire foot than at the top. It is shown that the
shape modification becomes pronounced at low growth temperatures. Theoretical results are used to model the
experimentally observed shapes of GaAs and GaP wires, grown by Au-assisted molecular beam epitaxy at
different temperatures.
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I. INTRODUCTION

Semiconductor nanowires have recently gained a continu-
ously growing interest due to many promising applications in
nanoelectronic, nanophotonic, and nanosensing devices
�1–4�, as well as from the viewpoint of fundamental growth
processes �5–12�. Radius and position controlled growth has
been considered as one of the most attractive features for
fabrication of organized arrays of wires, beginning from the
early works on micrometer scale whiskers �13,14� and end-
ing up with the recent developments at the nanometer scale
�1–4�. Modern epitaxial techniques enable the fabrication of
nanowires with radii of the order of 10 nanometers and
lengths typically of several micrometers. Growth of Si �5�
and III-V �6–10,12,15� nanowires is driven mainly by the
adatom diffusion from the substrate surface and from the
sidewalls. Despite very impressive progress in nanowire fab-
rication, many growth-related aspects in this field are not
completely understood so far. In particular, for the controlled
production of nanowires it is important to investigate the
effects influencing their geometrical shape.

Ideally, III-V wires obtained on the �111� surfaces acti-
vated by the seed drops should grow perpendicular to the
surface with a constant radius defined by the size of the drop.
However, many recent studies reveal that the wire radius
varies during the growth. Taking as an example the case of
Au-assisted molecular beam epitaxy �MBE� of GaAs wires,
the temperature domain for wire formation via the vapor-
liquid-solid mechanism �13� ranges from 420 to 620 °C
�7–10,16,17�. Wires obtained at higher temperatures, T
�500 °C, grow with constant radius during the first several
micrometers of their length. At T=580 °C such uniform
growth is observed until the length exceeds 3 �m �8,17�.

Longer wires are tapered towards their top because of the
reevaporation of some material from the sidewalls. This ef-
fect is described in Ref. �8� and modeled in Ref. �10�. At
lower T�420–500 °C, the wires become considerably
shorter and develop a specific conical shape �16,17�. In this
case, the size of the drop remains constant. Experimental
facts strongly suggest that the observed conicity is explained
either by some changes at the liquid-solid interface �e.g., in
the contact angle and in the direction of interfacial forces
�18,19�� or by the nucleation of adatoms on the sidewalls
before they reach the top. The latter effect was mentioned as
technologically undesirable in the book by Givargizov �14�,
where it was also argued that the lateral growth usually oc-
curs at low temperatures. This observation is supported by
the above-mentioned findings for GaAs wires. To the best of
our knowledge, there was no attempt made so far to master
the effect of sidewall nucleation theoretically. It is not a
simple problem because relevant theoretical models must in-
clude nonlinear terms for two reasons. First, the nucleation
rate depends exponentially on the supersaturation through
the Zel’dovich equation of classical nucleation theory �20�.
Second, the side facets of laterally growing wires are no
longer flat, while the local curvature of the surface will itself
depend on the nucleation rate.

This paper aims at modeling the wire growth in both the
vertical and lateral directions. The model is capable of de-
scribing the wire radius as a function of its length and the
distance from the surface. We propose a nonlinear equation
for the adatom supersaturation on the sidewalls of the “dif-
fusion plus reaction type.” A simplified version is reduced to
a nonlinear differential equation with a constant rate of
“birth” and an exponential “extinction” of particles, which
can be treated analytically. Our analysis shows that in the
case of beam deposition there exists a certain critical diffu-
sion flux, below which the diffusion-induced growth should
be stopped completely, i.e., the crystals would emerge in the
form of laterally extending islands rather than wires. Nu-*dubrovskii@mail.ioffe.ru
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merical simulations are used to analyze our experimental
data for the Au-assisted MBE of GaAs and GaP nanowires.

II. MODEL

Our model is the following. Consider a wire growing with
arbitrary shape characterized by radius R�z , t� and length
L�t�, where z is the distance from the surface layer �“height”�
and t is the time �Fig. 1�. Obviously, point z=0 corresponds
to the wire foot and point z=L�t� to the top. At t=0 the drop
of radius Rd is on the surface of a bare substrate and the wire
length L�t=0�=0. We assume that the radius of the drop
remains constant during the growth, implying R�z ,L�t�=z�
=Rd. The wire cross section is assumed to be a circle or a
regular polygon; in the latter case R�z , t� is the radius of the
circle inscribed in the polygon. Vertical and lateral growth of
the wire is described by the following equations:

dL

dt
= VL�L�, L�t = 0� = 0, �1�

dR�z,t�
dt

= VR�z,L�, R�z,L�t� = z� = Rd, �2�

where VL and VR are, by definition, the vertical and lateral
growth rates, respectively. In the steady state, the radius R
can be treated as function of z and L instead of z and t, by
using the one-to-one correspondence between L and t. In this
case Eqs. �1� and �2� are reduced to

R�z,L� = Rd + �
z

L

dL�
VR�z,L��
VL�L��

. �3�

For the following analysis we require some models for the
vertical and lateral growth rates. As usually admitted, the
vertical growth rate in the diffusion-induced mode depends
on the equivalent deposition rate V=J� cos �0 ��0 is the in-
cident angle of the beam, see Fig. 1�, the desorption from the

drop, the growth rate of surface layer, and the diffusion-
induced contribution �7�,

VL�L� = �� − ��V +
�

�Rd
2 jdif f�L� . �4�

The parameter � is the rate of desorption from the drop in
units of V �7�, � is the volume per III-V pair in the crystal,
and parameter �=1−Vs /V accounts for the vertical growth of
the surface layer at rate Vs. The diffusion flux of adatoms to
the top, driven by the difference of chemical potentials on
the surface layer and in the drop �10� �or on the top facet �15�
in the case of catalyst-free growth�, is defined as

jdif f�L� = − 2�RdD�dn

dz
�

z=L
. �5�

Here, D is the diffusion coefficient on the sidewalls and n is
the adatom concentration. The flux given by Eq. �5� gener-
ally consists of two fluxes, one resulting from the atoms
directly impinging on the sidewalls and another formed by
the atoms impinging on the surface, then migrating to the
wire base and finally to its top along the sidewalls. While
considering the latter we assume that the flux to the wire
base per unit length of the base 2�R0 remains constant dur-
ing the growth. As shown in Ref. �21�, this is always true if
R0 is much larger than the effective diffusion length of ada-
toms on the surface 	s. Our boundary condition should hold
for a sufficiently thick wire foot with R0�100 nm, because
the diffusion on the surface is limited by the nucleation and
the values of 	s estimated for typical growth conditions dur-
ing MBE of Ga�Al�As wires are of the order of few tens of
nm �22�. Using the equation of continuity at the wire foot,
we obtain

− D�dn

dz
�

z=0
=

jdif f�0�
2�R0

= const. �6�

Nucleation-mediated lateral growth of the wire may pro-
ceed in mononuclear or polynuclear mode, depending on the
drop radius and the growth conditions �20,23�. For the sake
of simplicity, also taking into consideration that the effect of
nucleation is pronounced at high supersaturations of ada-
toms, below we use the radius independent expression for VR
in the polynuclear mode �20�

VR�
� = h�I�
�v2�
��1/3. �7�

Here, h is the height of a monolayer, I is the nucleation rate,
and v is the lateral growth rate of a two-dimensional island.
Functions I and v depend on the adatom supersaturation,
defined as 
=n /neq−1. The equilibrium concentration of
adatoms neq is determined by the temperature T, further as-
sumed as being constant along the wire, which is always
fulfilled for sufficiently short wires with a length of several
�m �11�. The dependence of VR on 
 is mainly governed by
a very steep exponential dependence of I on 
 �20,23,24�:

I�
� � �D
−1 exp�−

a

ln�
 + 1�	 . �8�

The expression for the nucleation barrier is written in the
case of two-dimensional nuclei arising at the solid-vapor in-

FIG. 1. �Color online� Schematics of the growth model includ-
ing the wire, the surface layer, and the drop, at three different times.
J is the impingement flux, �0 is the incident angle of the beam to the
flat surface, and � is the local incident angle. The inset at the top left
illustrates the polynuclear lateral growth of the side facet.
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terface �23�; a
c��SV /kBT�2 is a thermodynamic constant,
 is the area of adsorption site on the sidewalls, �SV is the
specific edge energy of the lateral solid-vapor interface per
unit length of the island, c is the island shape constant, and
kB is the Boltzmann constant. Parameter �D describes the
characteristic time of island growth.

Steep exponential dependence of the nucleation rate on
the supersaturation allows one to simplify Eq. �7� to the form
�23,24�

VR�U� � VR�0�exp�− U� . �9�

Here, the new unknown function is defined as U= �� /3�
���
0−
� /
0�. The parameter �, obtained simply from the
Taylor expansion of F�
� near 
0, has the same order of
magnitude as the critical size of classical nucleation theory at

=
0 �24� and is therefore much larger than unity. Quanti-
ties VR�0� and 
0 are the lateral growth rate and the adatom
supersaturation at the wire foot, respectively. When the ada-
tom diffusion flux is directed towards the wire top, 
 must
decrease with the height. Therefore, we are looking for the
solutions for U increasing with z.

Finally, the steady state kinetic equation for the adatom
concentration n�z� on the curved surface of local radius
R�z ,L� is

−
d

dz
�2�RD

dn

dz
	 = 2�R�Jef f −

n

�A
−

VR

�
	 . �10�

The left-hand side describes the diffusion, the first term in
the right-hand side stands for the adsorption on the sidewalls,
the second term describes the desorption from the sidewalls
with a characteristic lifetime �A, and the third term gives the
adatom sink due to the nucleation. The effective impinging
flux at height z in the case of beam deposition is determined
as Jef f = �V /���sin � /cos �0, where �=�0+�� is the local
incident angle and �� is the adjunct caused by the curvature
of the surface, as shown in Fig. 1. From geometrical consid-
erations, the latter is given by tan ��=−dR /dz. Using Eqs.
�4�–�6� and �9�, Eqs. �10� and �3� for n and R can be rewrit-
ten in terms of the unknown U in the form

d2U

dx2 +
1

�

d�

dx

dU

dx
= − e−U +

V

�VR�0�
sin��0 + ���

cos �0
, �11�

U�x = 0� = 0, �dU

dx
�

x=0
= �A , �12�

��x,l� = 1 +
e−U�x�

2
�

x

l dx�

dU/dx� + �
. �13�

Here, the normalized radius �=R /Rd and the normalized ver-
tical coordinates x=z /L*; l=L /L* are expressed in the units
of the effective diffusion length on the sidewalls, given by

L* = �3�Dneq
0

VR�0�� 	1/2

. �14�

Since L* is always much smaller than the diffusion length of
a single adatom on the flat lateral surface 	 �3–10 �m in the

case of Ga atoms on the GaAs�110� surface at 580 °C
�8,25��, in Eq. �11� we do not write the term which is pro-
portional to �L* /	�2. The normalized diffusion flux to the
wire base equals

�A =
�

3Dneq
0

jdif f�0�
2�R0

L*. �15�

The local curvature of the surface in the right-hand side of
Eq. �11� is obtained from

tan �� = −
Rd

L*

d�

dx
.

The constant �= ���−��VRd� / �2VR�0�L*� in Eq. �13� stands
for the adsorption induced contribution to the vertical growth
rate.

In these nondimensional coordinates, the wire shape de-
pends on the diffusion flux to the base �A and the
adsorption-desorption coefficient �. The solution to Eq. �11�
for U with boundary conditions �12� is used in Eq. �13� for
computing the wire shape. The nonlinear equation for ��x , l�
given by Eqs. �11�–�13� in its general form can only be
solved numerically. Simulation results will be presented be-
low. In Sec. III we show that a simplified version of the
model can be studied analytically. This study enables us to
draw several qualitative conclusions regarding the behavior
of wire shape at different growth conditions.

III. ANALYTICAL SOLUTION

Let us now consider the simplified version of Eq. �11� at a
small curvature of the surface, setting the local incident
angle � to �0. The resulting two-parametric equation de-
scribes the diffusion with the constant rate of birth and the
exponential rate of extinction at the fixed particle supplying
flux at x=0,

d2U/dx2 = − exp�− U� + � ,

U�x = 0� = 0; U��x = 0� = �A . �16�

Here, the parameter �= �V tan �0� / ��VR�0�� represents the
direct impingement to the sidewalls, while U��0�=�A, as
above, stands for the adatom supply at the wire foot. Equa-
tion �16� has the first integral of the form

1

2
dU

dx
�2

+ G�U� =
A

2
�17�

with

G�U� = 1 − �U − exp�− U� . �18�

We now show how the main properties of the system at
different values of A and � can be analyzed by considering
Eqs. �17� and �18�. It is noteworthy that Eq. �17� has the
form of the energy conservation equation for a classical point
“particle” with “coordinate” U, “time” x, “total energy”
A /2=const, “potential energy” G�U� and a unit “mass.” The
total energy is defined by U��0� and the form of the potential
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depends on �. Initial conditions to Eq. �16� yield that our
hypothetic particle has zero coordinate and the fixed velocity
U��0� at zero time. As already mentioned, relevant solutions
for U�x� must increase with x, since the diffusion flux would
otherwise change its direction. In terms of particle motion
we are therefore searching for the cases when the particle,
starting its motion at U=0 with given velocity, travels to
point U= +� at x→�. Such unlimited motion takes place
only if A /2 is larger than the potential barrier, which equals
the maximum of G�U� at U=U*. The values of U* and
G�U*� are readily calculated by maximizing Eq. �18�: U*=

−ln �, G�U*�=1−�+� ln �. This yields U*�0 at ��1.
The height of the potential barrier decreases with increasing
�; the barrier disappears at �=1. At given �, the case of
A /2�G�U*� corresponds to the repulsion from the potential
barrier at a turning point U1, for which A /2=G�U1�. After
that the particle moves to U=−�. Potentials G�U� at differ-
ent � are presented in Fig. 2. The case of A /2�G�U*� re-
lates to nonphysical oscillations of solutions U�x� with infi-
nite amplitude. Therefore, the condition Ac /2=G�U*�
determines the critical diffusion flux to the wire base �Ac,
below which the wires cannot be grown by the surface dif-
fusion. For fluxes lower than �Ac, the dominant fraction of
adatoms cannot reach the wire top because of very efficient
sidewall nucleation. The lateral growth dominates over the
vertical one and the crystals grow in the form of islands
rather than wires. The resulting morphology is a corrugated
laterally overgrown surface instead of the expected aniso-
tropic array. The curve �Ac=�2�1−�+ln �� in the �A−�
plane, shown in Fig. 3, separates the region of wire growth
�above the curve� from the islanding region �below the
curve�. The decrease of the critical flux with � is well un-
derstood intuitively, because the direct impingement to the
sidewalls at the wire neck promotes the vertical growth.

The wire shape is obtained in a simple analytical form in
the case �=0, when the beam is strictly perpendicular to the
surface. This is a standard assumption in MBE �7,8�. At �
=0, Eq. �17� can be integrated exactly,

U�x� = 2 ln� sinh���x + x0��
�2�

	 , �19�

where the constants are given by

� =
�A − 2

2
, x0 = −

1

2�
ln�1/2 + �2 − �

�1/2 + �2 + �
� . �20�

Inserting Eq. �19� into Eq. �13� and integrating, we obtain the
exact solution for the wire shape ��x , l�. Below we present
the resulting expression only in the case of �=0, when the
diffusion-induced contribution to the vertical growth rate is
much larger then the flux directly impinging the wire top,

��x,l� = 1 +
1

2 sinh2���x + x0��
ln cosh���l + x0��

cosh���x + x0��� .

�21�

The supersaturation of adatoms and the wire shape in nor-
malized coordinates now depend on the only parameter �A.
The cylinder to cone shape transformation, induced by the
reduction in the supplying flux at the wire foot, is demon-
strated in Fig. 4. The critical diffusion flux now equals �2.
According to Eq. �20�, x0→�2 at �→0, and Eq. �21� is
reduced to

�c�x,l� =
3

4
+

1

4
 l + �2

x + �2
�2

. �22�

This function, shown as a dashed-dotted curve in Fig. 4, does
not depend on any of the system parameters and is deter-
mined entirely by the form of model equations. The critical
curve describes the limit case of the thickest possible wire of
given length l that can be grown by the surface diffusion.
The radius of the wire base ��0, l� scales with l as l2 at large
l so that the lateral growth is much faster than the vertical
one. The growth of a wire of shape �22� with a finite length
l requires infinite time.

FIG. 2. �Color online� Forms of potential G�U� at different
�. FIG. 3. �Color online� Kinetic phase diagram illustrating the

domains for the island and the wire formation.
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IV. TEMPERATURE DEPENDENCE

The temperature behavior of wire shape is dictated by the
temperature dependence of the diffusion flux and the effec-
tive diffusion length on the sidewalls. Although it is not es-
sential, we restrict the following analysis to the case �=0,
when the wire radius ��x , l� is given by simple equation �21�.
As shown in Ref. �22�, the boundary condition at the wire
foot of form �6� yields j0 / �2�R0�=�V / ��PW�, where PW is
the total perimeter of the wire bases per unit surface area. At
a small desorption from the surface, the parameter � can be
estimated as �= PW / �PW+ PI�, where PI is the appropriately
averaged perimeter of islands emerging in the surface layer.
The latter depends on the temperature T and the flux V as
PI�V exp��3� /2+ED� /kBT�, with � being the specific con-
densation heat and ED the diffusion barrier for adatoms �22�.
At otherwise similar growth conditions, PI increases at lower
T because of the higher density of islands �22,24�. To esti-
mate the unknown supersaturation at the wire foot, we use
the model of an amorphous crystal growing uniformly in all
directions. In this approximation the lateral growth rate at z
=0 equals the vertical growth rate of the surface layer itself:
VR�0��Vs= �1−��V. Using this in Eqs. �7� and �8� at 

=
0, with logarithmic accuracy we obtain 
0
�exp�a /3 ln�h / ��1−��V�D���. This exponent contains the
ratio of two very large values—the thermodynamic constant
a to the logarithmic ratio of the macroscopic deposition time
h /V and the microscopic time of island growth �D. The latter
is defined as �D= tD /�eq, where tD is the diffusion time �such
that the diffusion coefficient D=� / �htD�� and �eq

= �� /h�neq is the equilibrium adatom coverage of the surface
�10�. Substitution of this expression for 
0 into Eqs. �14� and
�15� together with the conventional temperature dependences
tD=�D

−1 exp�ED /kBT� and �eq=exp�−� /kBT� �21–24� leads
to

L* �  3�
0

4�1 − ���V�D
�1/2

�
1

�V
exp−

�ED + ��
kBT

� ,

�23�

�A �
1

L*PI

�
1

�V
exp−

�ED + 2��
2kBT

� . �24�

When deriving these semiquantitative expressions, we again
assume that the characteristics of the surface layer and the
sidewalls at the wire foot are approximately the same. Equa-
tions �23� and �24� demonstrate that the diffusion length and
the flux decrease at a lower temperature as the Arrhenius
exponents, also scaling at increasing flux as 1 /�V. Therefore,
the critical diffusion flux relates to a certain minimum tem-
perature, below which the wires cannot be grown.

V. THEORY AND EXPERIMENT

In this section we use the described model for fitting our
experimental data obtained for Au-assisted MBE of GaAs
and GaP wires. Growth experiments were performed in a
Riber 32 MBE machine equipped with the solid source of Ga
atoms and the cracker sources to produce dimers of As �P�.
We used �111�B substrates activated by an Au layer of ap-
proximately 1 nm equivalent thickness, deposited in the
MBE vacuum chamber and annealed before growth. In all
growth runs, the deposition rate V was fixed to 0.2 nm /s, the
V/III flux ratio was set to 3, while the substrate temperature
T was varied. More experimental details can be found in
Refs. �16,17�. In all cases we observed pronounced lateral
growth and the cylinder to cone shape modification at suffi-
ciently low T. In the case of InAs nanowires grown by Au-
assisted metal organic vapor pressure epitaxy, a similar effect
was described in Ref. �26�: the nanowires had an approxi-
mately cylindrical shape at T=480 °C and a conical shape
with a much smaller length at T=420 °C. It is noteworthy
that our GaAs and GaP nanowires are obtained at T well
above the eutectic melting point of bulk Au-Ga alloy
�339.4 °C �27�� and therefore grow by the conventional
vapor-liquid-solid mechanism �13�. InAs wires of Ref. �26�
were grown below the melting point of bulk Au-In alloy
�454.3 °C �27��, so that their formation could proceed via the
vapor-solid-solid mechanism �28�. However, in both cases,
the wire growth is controlled by the adatom diffusion �7,28�.
Since the supersaturation generally decreases with the
height, the physical reason for the shape modification should
remain qualitatively the same for both systems, regardless of
the state of catalyst on the wire top.

Figures 5 and 6 demonstrate the scanning electron micros-
copy �SEM� images of GaAs and GaP wires grown at differ-
ent T. GaAs wires shown in Fig. 5�b� grow with approxi-
mately constant radius up to approximately 3 microns of
their length and then taper due to the desorption of some Ga
atoms, as discussed in the Introduction. When T is below
500 °C, the wires adopt a specific conical shape, shown in
Fig. 5�a� for T=420 °C. Similar growth behavior is observed
for GaP wires, where the shape modification demonstrated
by Fig. 6 occurs at T decreasing from 580 to 450 °C, al-
though the drop radius Rd is now three times smaller. Figure
7 shows the typical example of experimental and theoretical
wire shapes R�z� at low T. The GaAs wire chosen for com-
parison with calculations is highlighted in the SEM image in
Fig. 5. The error bars indicate uncertainty in the measured

FIG. 4. �Color online� Wire shape ��x , l� as given by Eq. �21�
for fixed l=10 and different �A=13 �bold cylinder�, 7.8, 4.5, 3.3,
2.4, 1.9, 1.5, and �2. The lateral growth rate increases as �A de-
creases. The dashed-dotted curve is the critical curve.
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R�z� dependences of different wires with the same length,
obtained from the statistical analysis of SEM image. Theo-
retical curves are obtained from the numerical solution of
Eqs. �11�–�13�. Normalized coordinates �� ,x� are then trans-
formed into �R ,z� by fitting the value of L* at known Rd. The
best fits to the experimental R�z� dependences are obtained at
the values of parameters given in Table I, where the MBE
growth conditions are also presented. We find that the value
of v�0 is a good approximation, i.e., the direct impinge-
ment to the drop can be safely neglected. In both cases, the
best fit to the experimental data is obtained at low values of
�A=1.13−1.2, demonstrating that the growth parameters are
quite close to the critical flux. This is in line with our experi-
mental findings, because regular epitaxial wires can hardly
be observed at T lower than 420 °C for GaAs and 450 °C
for GaP. The value of �=0.525, obtained from the best fit in
both cases, at the incident angle �0=20°, provides the esti-
mate for VR�0�=0.07 nm /s. This gives a reasonable value of
the substrate growth rate at approximately 35% of the depo-
sition rate. Finally, in all our simulations of different GaAs
and GaP wires with pronounced conical shape the effective
diffusion length on the sidewalls was not larger than 300 nm,
i.e., at least ten times smaller than the diffusion length of Ga
atoms on the GaAs�110� surface at 580 °C, limited by de-
sorption.

In conclusion, we have shown that the shape modification
of III-V nanowires can be modeled by the nonlinear equation

for the adatom supersaturation, changing due to the direct
impingement, diffusion, and nucleation. The obtained solu-
tion provides the phase diagram, separating the domains of
wire growth and two-dimensional island growth. Nucleation
on the sidewalls becomes pronounced at sufficiently low
temperatures. The model equations demonstrate reasonable

(a)

(b)

FIG. 5. �Color online� SEM images of MBE-grown GaAs wires.
The growth was performed at �a� 420 °C �45° tilted view� and �b�
580 °C �cross view�.

(a)

(b)

FIG. 6. SEM images of GaP wires grown by MBE at �a� 420 °C
�45° tilted view� and �b� 580 °C �cross view�.
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FIG. 7. �Color online� Experimental �black squares� and theo-
retical �solid line� wire shape 2R�z� for the GaAs wire shown in Fig.
5�a�.
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correlation with our experimental data on the GaAs and GaP
wires, grown by the Au-assisted MBE. Fitting theoretical and
experimental wire shapes allows us to estimate some impor-
tant parameters of the growth process. In particular, we have
found that the effective diffusion length of Ga atoms at the
wire foot at low T is limited entirely by the nucleation and is

as small as 160 nm for GaAs wires at T=420 °C and
100 nm for GaP wires at T=450 °C. We now intend to
model more complex geometrical shapes with an abrupt
change of wire radius, observed in the case of InAs wires
�28�, account for the atomic structure of the lateral facets,
and consider the effect of lateral growth on the formation and
properties of heterostructured III-V nanowires.
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TABLE I. Growth conditions and fitting parameters of conical
III-V wires.

Wire
material

Surface
temperature

T �°C�

Drop
radius

Rd �nm�

Wire
length
L �nm� �A �

Diffusion
length

L* �nm�

GaAs 420 30 670 1.13 0.525 160

GaP 450 10 165 1.2 0.525 100
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